A characterization of Hilbert C✻-modules over finite dimensional C✻-algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Characterization of Hilbert C-modules over Finite Dimensional C-algebras

We show that the unit ball of a full Hilbert C∗-module is sequentially compact in a certain weak topology if and only if the underlying C∗-algebra is finite dimensional. This provides an answer to the question posed in J. Chmieliński et al [Perturbation of the Wigner equation in inner product C∗-modules, J. Math. Phys. 49 (2008), no. 3, 033519].

متن کامل

Hilbert modules over pro-C*-algebras

In this paper, we generalize some results from Hilbert C*-modules to pro-C*-algebra case. We also give a new proof of the known result that l2(A) is aHilbert module over a pro-C*-algebra A.

متن کامل

G-frames in Hilbert Modules Over Pro-C*-‎algebras

G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...

متن کامل

*-frames in Hilbert modules over pro-C*-algebras

‎In this paper‎, ‎by using the sequence of multipliers‎, ‎we introduce frames with algebraic bounds in Hilbert pro-$ C^* $-modules‎. ‎We investigate the relations between frames and $ ast $-frames‎. ‎Some properties of $ ast $-frames in Hilbert pro-$ C^* $-modules are studied‎. ‎Also‎, ‎we show that there exist two differences between $ ast $-frames in Hilbert pro-$ C^* $-modules and Hilbert $ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operators and Matrices

سال: 2009

ISSN: 1846-3886

DOI: 10.7153/oam-03-14